№1635
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Докажите, что значение данной дроби при всех допустимых значениях \(x\) равно -8, укажите эти допустимые значения \(x\): \(\frac{8-\frac{8}{x^{3}}}{(\frac{1}{x}-1)(\frac{1}{x^{2}}+\frac{1}{x}+1)}\)
Ответ
NaN
Решение № 1635:
\(\frac{8-\frac{8}{x^{3}}}{(\frac{1}{x}-1)(\frac{1}{x^{2}}+\frac{1}{x}+1)} = \frac{8 \cdot (1- \frac{1}{x^{3}})}{(\frac{1}{x} -1)( \frac{1}{x^{2}} + \frac{1}{x} +1}=\frac{-8 \cdot ( \frac{1}{x^{3}} -1)}{( \frac{1}{x^{3}} -1)}=-8; при x \neq 0\)