№1634
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Докажите, что значение данной дроби при всех допустимых значениях \(x\) равно -8, укажите эти допустимые значения \(x\): \(\frac{8x+8}{\frac{x^{2}-1}{1-x}}\)
Ответ
NaN
Решение № 1634:
\(\frac{8x+8}{\frac{x^{2}-1}{1-x}} = \frac{8x+8}{1} \cdot \frac{-(x-1)}{x^{2}-1}=\frac{-8 \cdot (x+1)(x-1)}{(x-1)(x+1)}=-8; при x^{2}-1 \neq 0 ⇒ x-1 \neq 0; x \neq 1 и x+1 \neq 0; x \neq -1\)