№1628
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Сократите дробь и выясните, изменилось ли в результате сокращения множество допустимых значений её переменных: \(\frac{x-1}{x^{2}-x}\)
Ответ
\(\frac{1}{x} имеет смысл при x \neq 0\)
Решение № 1628:
\(\frac{x-1}{x^{2}-x}=\frac{x-1}{x(x-1)}=\frac{1}{x}; \frac{1}{x} имеет смысл при x \neq 0\)