№16207
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, стандартный вид многочлена,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Дан многочлен \(p(x;y)=7\cdot x+4\cdot y-11\). Считая, что \(y=3\cdot x^{2}-2\cdot x+5 \), преобразуйте \(p(x;y)\) так, чтобы получился многочлен от одной переменной \(x\), и приведите его к стандартному виду.
Ответ
\(12\cdot x^{2}-x+9\)
Решение № 16205:
\(7\cdot x+4\cdot y-11=7\cdot x+4\cdot (3\cdot x^{2}-2\cdot x+5)-11=7\cdot x+12\cdot x^{2}-8\cdot x+20-11=12\cdot x^{2}-x+9\)