№16191
Экзамены с этой задачей: Целые алгебраические выражения
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена, стандартный вид многочлена,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Дан многочлен \(p(a;b)=a^{3}+5\cdot a^{2}\cdot b+2\cdot a\cdot b^{2}+b^{3}+a\cdot b^{2}-2\cdot a^{2}\cdot b\). Вычислите \(p(1;1)\)
Ответ
8
Решение № 16189:
\(p(1;1)=a^{3}+b^{3}+3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}=1^{3}+1^{3}+3\cdot 1^{2}\cdot 1+3\cdot 1\cdot 1^{2}=1+1+3+3=8\)