№1613
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Сократите дробь: \(\frac{a^{2}+2bc-b^{2}-c^{2}}{b^{2}-a^{2}-c^{2}-2ac}\)
Ответ
\(\frac{a-b+c}{b-a+c}\)
Решение № 1613:
\(\frac{a^{2}+2bc-b^{2}-c^{2}}{b^{2}-a^{2}-c^{2}-2ac}=\frac{a^{2}-(b^{2}-2bc+c^{2}}{b^{2}-(a^{2}-2ac+c^{2}}= \frac{a^{2}-(b-c)^{2}}{b^{2}-(a-c)^{2}}=\frac{(a-b+c)(a+b-c)}{(b-a+c)(b+a-c)}=\frac{a-b+c}{b-a+c}\)