№16098
Экзамены с этой задачей: Преобразования буквенных иррациональных выражений
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{m^{\frac{4}{3}}-27m^{\frac{1}{3}}\cdot n}{m^{\frac{2}{3}}+3\sqrt[3]{mn}+9n^{\frac{2}{3}}}:\left ( 1-3\sqrt[3]{\frac{n}{m}} \right )-\sqrt[3]{m^{2}}\)
Ответ
0
Решение № 16096:
\(\frac{m^{\frac{4}{3}}-27m^{\frac{1}{3}}\cdot n}{m^{\frac{2}{3}}+3\sqrt[3]{mn}+9n^{\frac{2}{3}}}:\left ( 1-3\sqrt[3]{\frac{n}{m}} \right )-\sqrt[3]{m^{2}}=\frac{m^{\frac{1}{3}}\left ( m-27n \right )}{m^{\frac{2}{3}}+3m^{\frac{1}{3}}n^{\frac{1}{3}}+9n^{\frac{2}{3}}}:\frac{\sqrt[3]{m}-3\sqrt[3]{n}}{\sqrt[3]{m}}-m^{\frac{2}{3}}=m^{\frac{2}{3}}-m^{\frac{2}{3}}=0\)