Задача №16097

№16097

Экзамены с этой задачей: Преобразования буквенных иррациональных выражений 

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение \(\frac{2x^{-\frac{1}{3}}}{x^{\frac{2}{3}}-3x^{-\frac{1}{3}}}-\frac{x^{\frac{2}{3}}}{x^{\frac{5}{3}}-x^{\frac{2}{3}}}-\frac{x+1}{x^{2}-4x+3}\)

Ответ

0

Решение № 16095:

\(\frac{2x^{-\frac{1}{3}}}{x^{\frac{2}{3}}-3x^{-\frac{1}{3}}}-\frac{x^{\frac{2}{3}}}{x^{\frac{5}{3}}-x^{\frac{2}{3}}}-\frac{x+1}{x^{2}-4x+3}=\frac{2x^{-\frac{1}{3}}}{x^{-\frac{1}{3}}-\left ( x-3 \right )}-\frac{x^{\frac{2}{3}}}{x^{\frac{2}{3}}-\left ( x-1 \right )}-\frac{x+1}{\left ( x-1 \right )\left ( x-3 \right )}=\frac{2}{x-3}-\frac{1}{x-1}-\frac{x+1}{\left ( x-1 \right )\left ( x-3 \right )}=\frac{2x-2-x+3-x-1}{\left ( x-1 \right )\left ( x-3 \right )}=\frac{0}{\left ( x-1 \right )\left ( x-3 \right )}=0\)

Поделиться в социальных сетях

Комментарии (0)