№16094
Экзамены с этой задачей: Преобразования буквенных иррациональных выражений
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{\left ( x^{\frac{2}{3}}+2\sqrt[3]{xy}+4y^{\frac{2}{3}} \right )}{\left ( \sqrt[3]{x^{4}}-8y\sqrt[3]{x} \right ):\sqrt[3]{xy}}\cdot \left ( 2-\sqrt[3]{\frac{x}{y}} \right )\)
Ответ
-1
Решение № 16092:
\(\frac{\left ( x^{\frac{2}{3}}+2\sqrt[3]{xy}+4y^{\frac{2}{3}} \right )}{\left ( \sqrt[3]{x^{4}}-8y\sqrt[3]{x} \right ):\sqrt[3]{xy}}\cdot \left ( 2-\sqrt[3]{\frac{x}{y}} \right )=-\frac{y^{\frac{1}{3}}}{2y^{\frac{1}{3}}-x^{\frac{1}{3}}}\cdot \frac{2y^{\frac{1}{3}}-x^{\frac{1}{3}}}{y^{\frac{1}{3}}}=-1\)