№16092
Экзамены с этой задачей: Преобразования буквенных иррациональных выражений
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{\sqrt{1-x^{2}}-1}{x}\cdot \left ( \frac{1-x}{\sqrt{1-x^{2}}+x-1}+\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}} \right )\)
Ответ
-1
Решение № 16090:
\(\frac{\sqrt{1-x^{2}}-1}{x}\cdot \left ( \frac{1-x}{\sqrt{1-x^{2}}+x-1}+\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}} \right )=\frac{\sqrt{1-x^{2}}-1}{x}\cdot \left ( \frac{\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}} \right )=\frac{\sqrt{1-x^{2}}-1}{x}\cdot \frac{\sqrt{1-x}+\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}=\frac{\sqrt{1-x^{2}}-1}{x}\cdot \frac{1-x+2\sqrt{1-x^{2}}+1+x}{1+x-1+x}=\frac{1-x^{2}-1}{x^{2}}=\frac{-x^{2}}{x^{2}}=-1\)