№16088
Экзамены с этой задачей: Преобразования буквенных иррациональных выражений
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( \frac{a-\sqrt{a^{2}-b^{2}}}{a+\sqrt{a^{2}-b^{2}}}-\frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \right ):\frac{4\sqrt{a^{4}-a^{2}b^{2}}}{\left ( 5b \right )^{2}}\)
Ответ
-25.25
Решение № 16086:
\(\left ( \frac{a-\sqrt{a^{2}-b^{2}}}{a+\sqrt{a^{2}-b^{2}}}-\frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \right ):\frac{4\sqrt{a^{4}-a^{2}b^{2}}}{\left ( 5b \right )^{2}}=\frac{\left ( a-\sqrt{a^{2}-b^{2}} \right )^{2}-\left ( a+\sqrt{a^{2}-b^{2}} \right )^{2}}{\left ( a+\sqrt{a^{2}-b^{2}} \right )\left ( a-\sqrt{a^{2}-b^{2}} \right )}\cdot \frac{25b^{2}}{4\sqrt{a^{2}\left ( a^{2}-b^{2} \right )}}=\frac{a^{2}-2a\sqrt{a^{2}-b^{2}}+a^{2}-b^{2}-a^{2}-2a\sqrt{a^{2}-b^{2}}-a^{2}+b^{2}}{a^{2}-a^{2}+b^{2}}\cdot \frac{25b^{2}}{4\left | a \right |\sqrt{a^{2}-b^{2}}}=\frac{4a\sqrt{a^{2}-b^{2}}}{b^{2}}\cdot \frac{25b^{2}}{4\left | a \right |\sqrt{a^{2}-b^{2}}}=-\frac{25}{\left | a \right |}=-25,25\)