Задача №16087

№16087

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение \(\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{1}{x^{2}-\sqrt{x}}\)

Ответ

\(x-1\)

Решение № 16085:

\(\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{1}{x^{2}-\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x\left ( x+\sqrt{x}+1 \right )}}\cdot \frac{\sqrt{x\left ( x\sqrt{x}-1 \right )}}{1}=\frac{\left ( \sqrt{x}+1 \right )\left ( \sqrt{x} -1\right )}{\sqrt{x}\left (x+\sqrt{x}+1 \right )\left ( \sqrt{x}-1 \right )}\cdot \frac{\sqrt{x}\left ( x\sqrt{x}-1 \right )}{1}=\frac{x-1}{\sqrt{x}\left ( x\sqrt{x}-1 \right )}\cdot \frac{\sqrt{x}\left ( x\sqrt{x}-1 \right )}{1}=x-1\)

Поделиться в социальных сетях

Комментарии (0)