№16081
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, преобразование и вычисление алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( 2-x+4x^{2}+\frac{5x^{2}-6x+3}{x-1} \right ):\left ( 2x+1+\frac{2x}{x-1} \right )\)
Ответ
\(2x-1\)
Решение № 16079:
\(\left ( 2-x+4x^{2}+\frac{5x^{2}-6x+3}{x-1} \right ):\left ( 2x+1+\frac{2x}{x-1} \right )=\frac{\left ( 4x^{2}-x+2 \right )\left ( x-1 \right )+5x^{2}-6x+3}{x-1}:\frac{\left ( 2x+1 \right )\left ( x-1 \right )+2x}{x-1}=\frac{\left ( x^{3}+1 \right )+\left ( 3x^{3} -3x\right )}{\left ( x^{2}-1 \right )+\left ( x^{2}+x \right )}=\frac{4x^{2}-4x+1}{2x-1}=\frac{\left ( 2x-1 \right )^{2}}{2x-1}=2x-1\)