№16078
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, преобразование и вычисление алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{2b+a-\frac{4a^{2}-b^{2}}a{}}{b^{3}+2ab^{2}-3a^{2}b}\cdot \frac{a^{3}-2a^{2}b^{2}+ab^{3}}{a^{2}-b^{2}}\)
Ответ
\(\frac{a-b}{a+b}\)
Решение № 16076:
\(\frac{2b+a-\frac{4a^{2}-b^{2}}a{}}{b^{3}+2ab^{2}-3a^{2}b}\cdot \frac{a^{3}-2a^{2}b^{2}+ab^{3}}{a^{2}-b^{2}}=\frac{\frac{2ab-a^{2}-4a^{2}+b^{2}}{a}}{b\left ( b^{2}+2ab-3a^{2} \right )}\cdot \frac{ab\left ( a^{2}-2ab+b^{2} \right )}{\left ( a-b \right )\left ( a+b \right )}=\frac{\left ( a^{2}+2ab+b^{2} \right )-4a^{2}}{ab\left ( b+3a \right )\left ( b-a \right )}\cdot \frac{ab\left ( a-b \right )^{2}}{\left ( a-b \right )\left ( a+b \right )}=\frac{\left ( a+b \right )^{2}-4a^{2}}{-\left ( b+3a \right )\left ( a+b \right )}=-\frac{b-a}{a+b}=\frac{a-b}{a+b}\)