№16075
Экзамены с этой задачей: Преобразования алгебраических выражений и дробей
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, преобразование и вычисление алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( x^{2}+2x-\frac{11x-2}{3x+1} \right ):\left ( x+1-\frac{2x^{2}+x+2}{3x+1} \right )\)
Ответ
20
Решение № 16073:
\(\left ( x^{2}+2x-\frac{11x-2}{3x+1} \right ):\left ( x+1-\frac{2x^{2}+x+2}{3x+1} \right )=\frac{3x^{3}+6x^{2}+x^{2}+2x-11x+2}{3x+1}:\frac{3x^{2}+3x+x+1-2x^{2}-x-2}{3x+1}=\frac{3x^{3}+7x^{2}-9x+2}{3x+1}\cdot \frac{3x+1}{x^{2}+3x-1}=\frac{3x^{3}+7x^{2}-9x+2}{x^{2}+3x-1}=\frac{3x^{3}+9x^{2}-3x-2x^{2}-6x+2}{x^{2}+3x-1}=\frac{3x\left ( x^{2}+3x-1 \right )-2\left ( x^{2}+3x-1 \right )}{x^{2}+3x-1}=\frac{\left ( x^{2}+3x-1 \right )\left ( 3x-2 \right )}{x^{2}+3x-1}=3x-2=3\cdot 7.(3)-2=3\cdot 7\frac{3}{9}-2=22-2=20\)