№16068
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Через точку пересечения двух окружностей проведите прямую, на которой окружности высекают хорды, сумма которых наибольшая (центры окружностей расположены по разные стороны от их общей хорды).
Ответ
NaN
Решение № 16066:
Пусть \(M\) — общая точка окружностей с центрами \(O_{1}\) и \(O_{2}\) (рис. 153); прямая, проходящая через точку \(M\), пересекает окружности в точках \(A\) и \(B\) соответственно. Если \(P\) и \(Q\) — проекции точек \(O_{1}\) и \(O_{2}\) на эту прямую, то \(P\) — середина \(AM\), а \(Q\) — середина \(BM\). Тогда \(PQ = \frac{1}{2}AM + \frac{1}{2}BM = \frac{1}{2}AB \) и \(PQ\leqO_{1}O_{2}\), причем равенство достигается, если прямая \(AB\) перпендикулярна общей хорде двух окружностей.