№15873
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить системы уравнений: \( \left\{\begin{matrix} \log _{4}x-\log _{2}y & & \\ x^{2}-2y^{2}-8=0 & & \end{matrix}\right. \)
Ответ
\( \left ( 4; 2 \right ) )\
Решение № 15871:
ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ y> 0. & & \end{matrix}\right. \) Перепишем первое уравнение системы в виде \( \log _{4}x=\log _{2}y^{2} \Rightarrow \frac{1}{2}\log _{2}x=\log _{2}y, \log _{2}x=\log _{2}y^{2}, x=y^{2} \) Из второго уравнения системы имеем \( y^{4}-2y^{2}-8=0 \), откуда с учетом ОДЗ, \( y=0 \) Тогда \( x=4 \)