Задача №15869

№15869

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить системы уравнений: \( \left\{\begin{matrix} 2^{\frac{x+y}{3}}+2^{\frac{x+y}{6}}=6, & & \\ x^{2}+5y^{2}=6xy. & & \end{matrix}\right. \)

Ответ

\( \left ( 3; 3 \right )\left ( 5; 1 \right ) )\

Решение № 15867:

Из условия \( \left ( 2^{\frac{x+y}{6}} \right )^{2}+2^{\frac{x+y}{6}}-6=0 \) Решая это уравнение как квадратное относительно \( 2^{\frac{x+y}{6}} \), имеем \( 2^{\frac{x+y}{6}}=-3, \varnothing \); или \( 2^{\frac{x+y}{6}}=2 \), откуда \( \frac{x+y}{6}=1, x+y=6 \) Из второго уравнения системы \( x^{2}-6yx+5y^{2}=0 \), решая его как квадратное относительно \( x \), имеем \( x_{1}=y, x_{2}=5y \) Исходная система эквивалентна двум системам:\( \left\{\begin{matrix} x+y=6, & & \\ x=y; & & \end{matrix}\right. \left\{\begin{matrix} x+y=6, & & \\ x=5y; & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} x_{1}=3 & & \\ y_{1}=3 & & \end{matrix}\right. \left\{\begin{matrix} x_{2}=5 & & \\ y_{2}=1 & & \end{matrix}\right. \)

Поделиться в социальных сетях

Комментарии (0)