№15867
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить системы уравнений: \( \left\{\begin{matrix} \log _{\sqrt{x}}\left ( xy \right )=8, & & \\ \log _{3}\log _{1/9}\frac{x}{y}=0. & & \end{matrix}\right. \)
Ответ
\( \left ( 3; 27 \right ) )\
Решение № 15865:
ОДЗ: \( \left\{\begin{matrix} 0< x\neq 1, & & & \\ y> 0, & & & \\ \log _{1/9}\frac{x}{y}> 0\Rightarrow 0< \frac{x}{y}< 1 & & & \end{matrix}\right. \) Из первого уравнения системы \( xy=x^{4} \) или с учетом ОДЗ \( y=x^{3} \) Из второго уравнения имеем \( \log _{1/9}\frac{x}{y}=1, \frac{x}{y}=\frac{1}{9} \) Исходная система переписывается в виде \( \left\{\begin{matrix} y=x^{3} & & \\ \frac{x}{y}=\frac{1}{9} & & \end{matrix}\right. \Rightarrow \frac{x}{x^{3}}=\frac{1}{9} \), откуда с учетом с ОДЗ \( x=3, y=27 \)