Задача №15866

№15866

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить системы уравнений: \( \left\{\begin{matrix} 3^{2x}-2^{y}=725 & & \\ 3^{x}-2^{y/2}=25 & & \end{matrix}\right. \)

Ответ

\( \left ( 3; 2 \right ) )\

Решение № 15864:

Перепишем систему уравнений в виде \( \left\{\begin{matrix} \left ( 3^{x}-2^{y/2} \right \)left ( 3^{x}+2^{y/2} \right )=725, & & \\ 3^{x}-2^{y/2}=25 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3^{x}+2^{y/2}=29, & & \\ 3^{x}-2^{y/2}=25 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3^{x}=27, & & \\ 2^{y/2}=2, & & \end{matrix}\right. \), откуда \( \left\{\begin{matrix} x=3, & & \\ y=2. & & \end{matrix}\right. \)

Поделиться в социальных сетях

Комментарии (0)