Задача №15865

№15865

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить системы уравнений: \( \left\{\begin{matrix} 3^{2\sqrt{x}-\sqrt{y}}=81 & & \\ \lg \sqrt{xy}=1+\lg 3 & & \end{matrix}\right. \)

Ответ

\( \left ( 25; 36 \right ) )\

Решение № 15863:

ОДЗ: \( \left\{\begin{matrix} x> 0 & & \\ y> 0 & & \end{matrix}\right. \) Из первого уравнения системы имеем \( 3^{2\sqrt{x}-\sqrt{y}}=3^{4}, 2\sqrt{x}-\sqrt{y}=4, \sqrt{y}=2\sqrt{x}-4 \) Из второго уравнения системы получим \( \sqrt{xy}=30, \sqrt{x}*\sqrt{y}=30 \) Система принимает вид\( \left\{\begin{matrix} \sqrt{y}=2\sqrt{x}-4 & & \\ \sqrt{x}*\sqrt{y}=30 & & \end{matrix}\right.\Rightarrow \left ( \sqrt{x} \right )^{2}-2\sqrt{x}-15=0 \), откуда \( \sqrt{x}=5 \), или \( \sqrt{x}=-3 \), (не подходит). Тогда \( \sqrt{y}=6 \) Следовательно, \( x=25, y=36 \)

Поделиться в социальных сетях

Комментарии (0)