№15861
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 3\log _{2}^{2}\sin x+\log _{2}\left ( 1-\cos 2x \right )=2 \)
Ответ
\( \left ( -1 \right )^{n}\frac{\pi }{6}+\pi n )\, \( n\epsilon Z )\
Решение № 15859:
ОДЗ: \( 0< \sin x< 1 \) Так как \( 1-\cos 2x=2\sin ^{2}x \), то имеем \( 3\log _{2}^{2}\sin x+\log _{2}2\sin ^{2}x-2=0 \Leftrightarrow 3\log _{2}^{2}\sin x+2\log _{2}\sin x-1=0 \) Решая это уравнение как квадратное относительно \( \log _{2}\sin x \), получим \( \log _{2}\sin x=\frac{1}{3} \), или \( \log _{2}\sin x=-1 \), откуда \( \sin x=\sqrt[3]{2} \) (нет решений), или \( \sin x=\sqrt[1]{2} \) Тогда \( x=\left ( -1 \right )^{n}\frac{\pi }{6}+\pi n, n\epsilon Z \)