№15860
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражения: \( \log _{2}2x^{2}+\log _{2}x*x^{\log _{x}\left ( \log _{2}x+1 \right )}+\frac{1}{2}\log _{4}^{2}x^{4}+2^{-3\log _{1/2}\log _{2}x} \)
Ответ
\( \left ( \log _{2}x+1 \right )^{3} )\
Решение № 15858:
\( \log _{2}2x^{2}+\log _{2}x*x^{\log _{x}\left ( \log _{2}x+1 \right )}+\frac{1}{2}\log _{4}^{2}x^{4}+2^{-3\log _{1/2}\log _{2}x}=\log _{2}2+\log _{2}x^{2}+\log _{2}x*\left ( \log _{2}x+1 \right )+2\log _{2}^{2}x+2^{\log _{2}\log _{2}^{3}x}=1+2\log _{2}x+\log _{2}^{2}x+\log _{2}x+2\log _{2}^{2}x+\log _{2}^{3}x=\log _{2}^{3}x+3\log _{2}^{2}x+3\log _{2}x+1=\left ( \log _{2}x+1 \right )^{3} \)