№15859
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить системы уравнений: \( \left\{\begin{matrix} y=1+\log _{4}x, & & \\ x^{y}=4^{6.} & & \end{matrix}\right. \)
Ответ
\( \left ( \frac{1}{64}; -2 \right ), \left ( 16; 3 \right ) )\
Решение № 15857:
ОДЗ: \( 0< x\neq 1 \) Логарифмируя второе уравнение системы по основанию 4, имеем \( \log _{4}x^{y}, \log _{4}4^{6}. y\log _{4}x=6 \) Отсюда \( \left\{\begin{matrix} y=1+\log _{4}x, & & \\ y\log _{4}x=6 & & \end{matrix}\right.\Rightarrow \left ( 1+\log _{4}x \right \)log _{4}x=6, \log _{4}^{2}x+\log _{4}x-6=0 \), откуда, решая это уравнение как квадратное относительно \( \log _{4}x \), найдем \( \left ( \log _{4}x \right )_{1}=-3, \left ( \log _{4}x \right )_{2}=2, x_{1}=\frac{1}{64}, x_{2}=16 \) Тогда \( y_{1}=-2, y_{2}=3\)