Задача №15858

№15858

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить уравнения: \( 5^{\frac{1}{x-\sqrt{x}}}*0.2^{\frac{1}{\sqrt{x}}}=\sqrt[3]{ 25} \)

Ответ

\( \frac{9}{4} )\

Решение № 15856:

ОДЗ: \( 0< x\neq 1 \) Из условия \( 5^{\frac{1}{x-\sqrt{x}}}*5^{-\frac{1}{\sqrt{x}}}=5^{\frac{2}{3}}, 5^{\frac{1}{x-\sqrt{x}}-\frac{1}{\sqrt{x}}}=5^{ \frac{ 2}{ 3}} \) Отсюда \( \frac{1}{x-\sqrt{x}}-\frac{1}{\sqrt{x}}=\frac{2}{3}, 2\left ( \sqrt{x} \right )^{2}+\sqrt{x}-6=0 \) Решив это уравнение как квадратное относительно \( \sqrt{x} \), Найдем \( \sqrt{x}=-2, \varnothing \); или \( \sqrt{ x}= \frac{ 3}{ 2} \), откуда \( x= \frac{9}{ 4} \)

Поделиться в социальных сетях

Комментарии (0)