№15858
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 5^{\frac{1}{x-\sqrt{x}}}*0.2^{\frac{1}{\sqrt{x}}}=\sqrt[3]{ 25} \)
Ответ
\( \frac{9}{4} )\
Решение № 15856:
ОДЗ: \( 0< x\neq 1 \) Из условия \( 5^{\frac{1}{x-\sqrt{x}}}*5^{-\frac{1}{\sqrt{x}}}=5^{\frac{2}{3}}, 5^{\frac{1}{x-\sqrt{x}}-\frac{1}{\sqrt{x}}}=5^{ \frac{ 2}{ 3}} \) Отсюда \( \frac{1}{x-\sqrt{x}}-\frac{1}{\sqrt{x}}=\frac{2}{3}, 2\left ( \sqrt{x} \right )^{2}+\sqrt{x}-6=0 \) Решив это уравнение как квадратное относительно \( \sqrt{x} \), Найдем \( \sqrt{x}=-2, \varnothing \); или \( \sqrt{ x}= \frac{ 3}{ 2} \), откуда \( x= \frac{9}{ 4} \)