Задача №15854

№15854

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( 2^{x+\sqrt{x^{2}-4}}-5*\left ( \sqrt{2} \right )^{x-2+\sqrt{x^{2}-4}}-6=0 \)

Ответ

\( \frac{5}{2} )\

Решение № 15852:

ОДЗ: \( x^{2}-4\geq 0\Leftrightarrow x\epsilon \left ( -\infty ; -2 \right ]\cup \left [ 2; \infty \right ) \) Запишем уравнение в виде \( 2^{x+\sqrt{x^{2}-4}}-\frac{5}{2}*2^{\frac{x+\sqrt{x^{2}-4}}{2}}-6=0 \) Решая его как квадратное относительно \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}} \), имеем \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}}=-\frac{3}{2} \) (нет решений), или \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}}=2^{2} \Rightarrow \frac{x+\sqrt{x^{2}-4}}{2}=2, \sqrt{x^{2}-4}=4-x \Leftrightarrow \left\{\begin{matrix} x^{2}-4=16-8x+x^{2}, & & \\ 4-x\geq 0, & & \end{matrix}\right. \), откуда \( x=\frac{5}{2} \)

Поделиться в социальных сетях

Комментарии (0)