№15850
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{2}3+2\log _{4}x=x^{\frac{\log _{9}16}{\log _{3}x}} \)
Ответ
\( \frac{16}{3} )\
Решение № 15848:
ОДЗ: \( 0< x\neq 1 \) Из условия имеем \( \log _{2}3+\log _{2}x=x^{\frac{\log _{3}4}{\log _{3}x}} \Leftrightarrow \log _{2}3+\log _{2}x=x^{\log _{x}4} \Rightarrow \log _{2}3+\log _{2}x=4, \log _{2}3x=4 \), откуда \( 3x=16, x=\frac{16}{3} \)