Задача №15849

№15849

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить системы уравнений: \( \left\{\begin{matrix} \log _{xy}\left ( x-y \right )=1 & & \\ \log _{xy}\left ( x+y \right )=0 & & \end{matrix}\right. \)

Ответ

\( \frac{-1+\sqrt{5}}{2}; \frac{3-\sqrt{5}}{2} )\

Решение № 15847:

ОДЗ: \( \left\{\begin{matrix} x-y> 0 & & & \\ x+y> 0 & & & \\ 0< xy\neq 1 & & & \end{matrix}\right. \) Имеем \( \left\{\begin{matrix} x-y=xy & & \\ x+y=1 & & \end{matrix}\right. \Rightarrow y=1-x, x-\left ( 1-x \right )-x\left ( 1-x \right )=0, x^{2}+x-1=0 \), откуда \( x_{1}=\frac{-1-\sqrt{5}}{2}, x_{2}=\frac{-1+\sqrt{5}}{2}, y_{1}=\frac{3+\sqrt{5}}{2}, y_{2}=\frac{3-\sqrt{5}}{2} \) Тогда с учетом ОДЗ имеем \( x=\frac{-1+\sqrt{5}}{2}, y=\frac{3-\sqrt{5}}{2} \)

Поделиться в социальных сетях

Комментарии (0)