Задача №15847

№15847

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \left ( 3\log_{a}x-2 \right \)log_{x}^{2}a=\log_{\sqrt{a}}x-3 \left ( a> 0, a\neq 1 \right ) \)

Ответ

\( \frac{1}{a}; \sqrt{a}; a^{2} )\

Решение № 15845:

ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1, & & \\ 0< x\neq 1. & & \end{matrix}\right. \) Перейдем к основанию \( a \)Получаем \( \frac{3\log_{a}x-2}{\log_{a}^{2}x}=2\log_{a}x-3 \Leftrightarrow 2\log_{a}^{3}x-3\log_{a}^{2}x-3\log_{a}x+2=0 \), т.к. \( \log_{a}x\neq 0 \) Далее имеем \( 2\left ( \log_{a}^{3}x \right )-3\log_{a}x\left ( \log_{a}x+1 \right )=0 \Leftrightarrow 2\left ( \log_{a}x+1 \right \)left ( \log_{a}^{2}x-\log_{a}x+1 \right )-3\log_{a}x\left ( \log_{a}x+1 \right )=0 \Leftrightarrow \left ( \log_{a}x+1 \right \)left ( 2\log_{a}^{2}x-5\log_{a}x+2 \right )=0 \), откуда \( \log_{a}x+1=0 \), или \( 2\log_{a}^{2}x-5\log_{a}x+2=0 \) Из первого уравнения \( \log_{a}x=-1, x_{1}=\frac{1}{a} \) Из второго уравнения \( \log_{a}x=\frac{1}{2} \), или \( \log_{a}x=2 \), откуда \( x_{2}=\sqrt{a}, x_{3}=a^{2} \)

Поделиться в социальных сетях

Комментарии (0)