№15846
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \left | \log _{\sqrt{3}x}-2 \right |-\left | \log _{3}x-2 \right |=2 \)
Ответ
\( \frac{1}{9}; 9 )\
Решение № 15844:
ОДЗ: \( x> 0 \) Перейдем к основанию 3. Тогда \( \left | 2\log _{3}x-2 \right |-\left | \log _{3}x-2 \right |=2 \) Раскрывая модули получим три случая: \( \left\{\begin{matrix} \log _{3}x< 1, & & \\ -2\log _{3}x+2+\log _{3}x-2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} \log _{3}x< 1, & & \\ \log _{3}x=-2 & & \end{matrix}\right. \Rightarrow x_{1}=3^{-2}=\frac{1}{9}; \left\{\begin{matrix} 1\leq \log _{3}x< 2, & & \\ 2\log _{3}x-2+\log _{3}x+2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1\leq \log _{3}x< 2, & & \\ \log _{3}x=2 & & \end{matrix}\right. \log _{3}x=2 \), не подходит так как \( \log _{3}x< 2 . \left\{\begin{matrix} \log _{3}x\geq 2, & & \\ 2\log _{3}x-2-\log _{3}x+2=2 & & \end{matrix}\right. \left\{\begin{matrix} \log _{3}x\geq 2, & & \\ \log _{3}x=2 & & \end{matrix}\right. \Rightarrow x_{2}=3^{2}=9 \)