№15845
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 3^{\log _{3}^{2}x}+x^{\log _{3}x}=162 \)
Ответ
\( \frac{1}{9}; 9 )\
Решение № 15843:
ОДЗ: \( 0< x\neq 1 \) Перепишем уравнение в виде \( \left ( 3^{\log _{3}} \right )^{\log _{3}}+x^{\log _{3}}=162\Leftrightarrow x^{\log _{3}}+x^{\log _{3}}=162\Leftrightarrow x^{\log _{3}}=81\Leftrightarrow \log _{3}^{2}x=4 \) Тогда \( \left ( \log _{3}x \right )_{1}=-2 \), или \( \left ( \log _{3}x \right )_{2}=2 \), откуда \( x_{1}=\frac{1}{9}, x_{2}=9 \)