№15843
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Диаметр окружности проходит через середину хорды. Докажите, что эта хорда либо перпендикулярна диаметру, либо сама является диаметром.
Ответ
NaN
Решение № 15841:
Пусть диаметр \(АВ\) проходит через середину \(М\) хорды \(CD\). Предположите, что хорда \(CD\) не является диаметром. Тогда центр \(О\) окружности не лежит на хорде \(СD\), в частности, точки \(О\) и \(М\) различны (рис. 127). Точки \(О\) и \(М\) лежат на диаметре \(АВ\) и равноудалены от точек \(С\) и \(D\), поэтому прямая \(АВ\) — серединный перпендикуляр к хорде \(CD\). <img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/prasolov_7_9/7_geometry/204_answer.png' />