№15841
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что две окружности не могут пересекаться в трёх точках.
Ответ
NaN
Решение № 15839:
Предположите, что окружности с центрами \(О_{1}\) и \(O_{2} пересекаются в трёх точках \(А\), \(В\) и \(С\). Эти точки не могут лежать на одной прямой, поскольку прямая не может пересекать окружность в трёх точках. Прямые \(АВ\) и \(АС\) перпендикулярны прямой \(O_{1}O{2}\). Эти прямые не совпадают, поэтому из точки \(А\) проведены два перпендикуляра к одной прямой.