№15839
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что окружность, построенная на стороне равностороннего треугольника как на диаметре, проходит через середины двух других его сторон.
Ответ
NaN
Решение № 15837:
Середины \(М\) и \(N\) сторон \(АС\) и \(ВС\) равностороннего треугольника \(АВС\) являются основаниями высот, проведённых из вершин \(В\) и \(А\). Поэтому углы \(АМВ\) и \(ANB\) прямые, а значит, точки \(М\) и \(N\) лежат на окружности, построенной на отрезке \(АВ\) как на диаметре.