№15831
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Продолжения сторон \(АВ\) и \(CD\) прямоугольника \(ABCD\) пересекают некоторую прямую в точках \(М\) и \(N\), а продолжения сторон \(AD\) и \(ВС\) пересекают ту же прямую в точках \(Р\) и \(Q\). Постройте прямоугольник \(ABCD\), если даны точки \(М\), \(N\), \(Р\), \(Q\) и длина а стороны \(АВ\).
Ответ
NaN
Решение № 15829:
Предположите, что прямоугольник \(ABCD\) построен. Опустите из точки \(Р\) перпендикуляр \(PR\) на прямую \(ВС\). Прямоугольный треугольник \(PQR\) можно построить по гипотенузе \(PQ\) и катету \(PR = АВ = а\). Построив точку R, строим прямые \(ВС\) и \(AD\) и опускаем на них перпендикуляры из точек \(М\) и \(N\).