№15783
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \left ( 16^{\sin x} \right )^{\cos x}+\frac{6}{4^{\sin ^{2}\left ( x-\frac{\pi }{4} \right )}}-4=0 \)
Ответ
\( \frac{\pi n}{2}; n\epsilon Z )\
Решение № 15781:
Преобразуем знаменатель второго члена уравнения: \( 4^{\sin ^{2}\left ( x-\frac{\pi }{4} \right )}=4^{\left ( \sin x\cos \frac{\pi }{4}-\cos x\sin \frac{\pi }{4} \right )^{2}}=4^{\left ( \frac{\sqrt{2}}{2} \right \)left ( \sin ^{2}x-2\sin x\cos x+\cos ^{2}x \right )}=4^{\frac{1}{2}\left ( 1-\sin 2x \right )}=4^{\frac{1}{2}-\frac{1}{2}\left ( \sin 2x \right )}=\frac{2}{2^{\sin 2x}} \), откуда \( \frac{6}{4^{\sin ^{2}\left ( x-\frac{\pi }{4} \right )}}=3*2^{\sin 2x} \) Получаем уравнение \( \left ( 2^{\sin 2x} \right )^{2}+3*2^{\sin 2x}-4=0 \Rightarrow 2^{\sin 2x}=-4 \), (нет решений) или 2^{\sin 2x}=1 \), откуда \( \sin 2x=0 , x=\frac{\pi n}{2} \), где \( n\epsilon Z \)