Задача №15771

№15771

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \sqrt{\log _{0.04}x+1}+\sqrt{\log _{0.2}x+3}=1 \)

Ответ

25

Решение № 15769:

ОДЗ: \( \left\{\begin{matrix} \frac{1}{2}\log _{0.2}x+1\geq 0, & & & \\ \log _{0.2}+3\geq 0 & & & \\ x> 0 & & & \end{matrix}\right. \Leftrightarrow 0< x\leq 25 \) Перейдем к основанию 0,2. Имеем \( \sqrt{\frac{1}{2}\log _{0.2}x+1}+\sqrt{\log _{0.2}x+3}=1\Leftrightarrow \sqrt{\log _{0.2}x+2}+\sqrt{\log _{0.2}x+6}=\sqrt{2} \) Возведя обе части уравнения в квадрат, получим \( \log _{0.2}x+2+2\sqrt{\left ( \log _{0.2}x+2 \right \)left ( 2\log _{0.2}x+6 \right )}+2\log _{0.2}x+6=2\Leftrightarrow 2\sqrt{\left ( \log _{0.2}x+2 \right \)left ( 2\log _{0.2}x+6 \right )}=-3\log _{0.2}x-6\Rightarrow 4\left ( \log _{0.2}x+2 \right \)left ( 2\log _{0.2}x+6 \right )=9\left ( \log _{0.2}x+2 \right )^{2} , -3\log _{0.2}x-6\geq 0\Leftrightarrow \log _{0.2}x+2\leq 0 \) С учетом ОДЗ имеем \( \log _{0.2}x+2=0 \), откуда \( x=25 \)

Поделиться в социальных сетях

Комментарии (0)