№15769
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \left ( \sqrt[5]{3} \right )^{x}+\left ( \sqrt[10]{3} \right )^{x-10}=84 \)
Ответ
20
Решение № 15767:
Перепишем уравнение в виде \( \left ( \sqrt[10]{3} \right )^{2x}+\frac{\left ( \sqrt[10]{3} \right )^{x}}{3}-84=0, 3*\left ( \sqrt[10]{3} \right )^{2x}+\left ( \sqrt[10]{3} \right )^{x}-252=0 \) Решая уравнение как квадратное относительно \( \left ( \sqrt[10]{3} \right )^{x} \), получим \( \left ( \sqrt[10]{3} \right )^{x}=-\frac{23}{3}, \varnothing \); или \( \left ( \sqrt[10]{3} \right )^{x}=9, 3\frac{x}{10}=3^{2} \), откуда \( \frac{x}{10}=2, x=20 \)