№15761
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \lg \left ( \lg x \right )+\lg \left ( \lg x^{3}-2 \right ) = 0 \)
Ответ
10
Решение № 15759:
ОДЗ: \( \left\{\begin{matrix}lgx> 0 & & \\ lgx^{3}-2> 0 & & \end{matrix}\right. x> \sqrt[3]{100} \) Из условия имеем \( \lg \left ( \lg x*\left ( \lg x^{3}-2 \right ) \right )=0, \lg x\left ( 3\lg x-2 \right )=1, 3\lg ^{2}x-2\lg x-1=0 \) Решая это уравнение как квадратное относительно \( \lg x \), найдем \( \left (\lg x \right )_{1}=-\frac{1}{3} \), откуда \( x_{1}=\frac{1}{\sqrt[3]{10}} \), или \( \left ( \lg x \right )_{2}=1 \), откуда \( x_{2}=10; x_{1}=\frac{1}{\sqrt[3]{10}} \) не подходит по ОДЗ.