Задача №15758

№15758

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \frac{1}{3}\lg \left ( 271+3^{2\sqrt{x}} \right )+\lg 10=2 \)

Ответ

9

Решение № 15756:

ОДЗ: \( x\geq 0 \) Из условия \( \frac{1}{3}\lg \left ( 271+3^{2\sqrt{x}} \right )+1=2, \lg \left ( 271+3^{2\sqrt{x}} \right )=3 \) Тогда \( 271+3^{2\sqrt{x}}=1000, 3^{2\sqrt{x}}=3^{6} \), откуда \( \sqrt{x}=3, x=9 \)

Поделиться в социальных сетях

Комментарии (0)