Задача №15755

№15755

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить уравнения: \( 5^{\log _{2}\left ( x^{2}-21 \right )}*0.02^{2}*25^{-0.5\log _{2}x}=1\)

Ответ

7

Решение № 15753:

ОДЗ: \( \left\{\begin{matrix} x^{2}-21> 0 & & \\ x> 0 & & \end{matrix}\right. x> \sqrt{21} \) Записываем \( 5^{\log _{2}\left ( x^{2}-21 \right )}*0.04*\frac{1}{25^{-0.5\log _{2}x}}=1, 5^{\log _{2}\left ( x^{2}-21 \right )}=5^{2+\log _{2}x}, \log _{2}\left ( x^{2}-21 \right )=2+\log _{2}x, \log _{2}\left ( x^{2}-21 \right )=\log _{2}4x \), откуда \( x^{2}-21=4x, x^{2}-4x-21=0, x_{1}=7, x_{2}=-3; x_{2}=-3 \) не подходит по ОДЗ.

Поделиться в социальных сетях

Комментарии (0)