№15665
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что в конечной геометрической прогрессии, имеющей четное число членов, отношение суммы членов, стоящих на четных местах, к сумме членов, стоящих на нечетных местах, равно знаменателю прогрессии.
Ответ
NaN
Решение № 15663:
Дана прогрессия \(b\), \(b_{2}\),..., \(b_{2n}\). Тогда \(\frac{b_{2}+b_{4}+...+b_{2n}}{b_{1}+b_{3}+...+b_{2n-1}}= \frac{q(b_{1}+...b_{2n-1})}{b_{1}+...+b_{2n-1}}=q\)