Задача №15665

№15665

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,

Задача в следующих классах: 9 класс

Сложность задачи : 3

Задача встречается в следующей книге: Мордкович

Условие

Докажите, что в конечной геометрической прогрессии, имеющей четное число членов, отношение суммы членов, стоящих на четных местах, к сумме членов, стоящих на нечетных местах, равно знаменателю прогрессии.

Ответ

NaN

Решение № 15663:

Дана прогрессия \(b\), \(b_{2}\),..., \(b_{2n}\). Тогда \(\frac{b_{2}+b_{4}+...+b_{2n}}{b_{1}+b_{3}+...+b_{2n-1}}= \frac{q(b_{1}+...b_{2n-1})}{b_{1}+...+b_{2n-1}}=q\)

Поделиться в социальных сетях

Комментарии (0)