№15662
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найдите сумму квадратов первых шести членов геометрической прогрессии (\(b_{n}\)): \(b_{1} = \sqrt{5}\), \(q=\sqrt{6}\)
Ответ
NaN
Решение № 15660:
\(S_{6}^{*} = b_{1}^{2}+b_{2}^{2}+...+b_{6}^{2}=b_{1}^{2}(1+q^{2}+q^{4}+q^{6}+q^{8}+q^{10})=\frac{b_{1}^{2}(q^{12}-1)}{q^{2}-1}\) \(S_{6}^{*} = \frac{5(46656-1)}{5}=46655\)