№15657
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Первый член возрастающей геометрической прогрессии (\(b_{n}\)) равен 4, а сумма третьего и пятого членов равна 80. Найдите \(q\) и \(b_{10}\), если известно, что прогрессия возрастающая.
Ответ
NaN
Решение № 15655:
\(b_{1} = 4\). \(b_{3}+b_{5} = 80\), \(q> 1\), тогда \(b_{3}+b_{5} = b_{1}(q^{2}+q^{4}) =80\) то есть \(q^{2}+q^{4} = 20\), так что \(q=2\) и \(b_{10} = b_{1}*q^{9} = 4*2^{9} = 2^{11} = 2048\)