№15649
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
В конечной геометрической прогрессии указаны первый член \(b_{1}\) знаменатель \(q\) и сумма \(S_{n}\) всех ее членов. Найдите число членов прогрессии: \(b_{1} = 5\), \(q= 3\), \(S_{n}=200\)
Ответ
NaN
Решение № 15647:
\(S_{n} = \frac{b_{1}(q^{n}-1)}{q-1}\, \(q^{n} = \frac{S_{n}(q-1)}{b_{1}}+1\), \(3n = \frac{200(3-1)}{5}+1)\, \(3^{n} = 81\), \(n=4\)