№15642
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найдите те значения переменной \(х\), при которых числа \(х -1\), \(\sqrt{3x}\), \(6x\) являются последовательными членами геометрической прогрессии.
Ответ
\(\frac{3}{2}\)
Решение № 15640:
Если \(x-1\), \(\sqrt{3x}\),6x - члены прогрессии, то (\(x-1\))6x = (\sqrt{3x})^{2}, \((x-1)*6 = 3\), \(x=\frac{3}{2}\)