№15629
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Для геометрической прогрессии (\(b_{n}\)) найдите \(S_{n}\), если: \(b_{1} = -1\), \(q=-1,5\), \(n=8\)
Ответ
NaN
Решение № 15627:
\(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{8}=\frac{-1((-1,5)^{8}-1)}{-1,5-1}=\frac{1261}{128}\)