№15626
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найдите сумму первых шести членов геометрической прогрессии (\(b_{n}\)), заданной следующими условиями: \(b_{1} = -12\), \(q=-\frac{1}{2}\)
Ответ
NaN
Решение № 15624:
\(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{6}=\frac{-12((-\frac{1}{2})^{6}-1)}{-\frac{1}{2}-1}=-\frac{12*2*63}{3*64} = -\frac{63}{8}\)