№15617
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Между числами 1 и \(\frac{1}{8}\) вставьте два положительных числа так, чтобы получились четыре последовательных члена геометрической прогрессии.
Ответ
NaN
Решение № 15615:
\(b_{1}=1\), \(b_{4} = \frac{1}{8}\), тогда \(q=\sqrt[3]{b_{4}:b_{1}} = \frac{1}{2}\) и \(b_{2} = \frac{1}{2}\), \(b_{3} = \frac{1}{4}\). То есть 1,\(\frac{1}{2}\), \(\frac{1}{4}\), \(\frac{1}{8}\).