№15600
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Зная формулу n-го члена геометрической прогрессии (\(b_{n}\)), определите \(b_{1}\) и \(q\): \(b_{n}=\frac{5}{2^{n+1}}\)
Ответ
NaN
Решение № 15598:
\(b_{n}=\frac{5}{2^{n+1}}*b_{n} = \frac{5}{4}(\frac{1}{2}^{n-1})\), \(b_{1}=\frac{5}{4}\), \(q=\frac{1}{2}\)